* Máquina de vectores soporte: sistemas que permiten reconocimiento de patrones genéricos de gran potencia.
* Redes neuronales: sistemas con grandes capacidades de reconocimiento de patrones.
* Modelos ocultos de Markov: aprendizaje basado en dependencia temporal de eventos probabilísticos.
* Sistemas difusos: técnicas para lograr el razonamiento bajo incertidumbre. Ha sido ampliamente usada en la industria moderna y en productos de consumo masivo, como las lavadoras.
* Computación evolutiva: aplica conceptos inspirados en la biología, tales como población, mutación y supervivencia del más apto para generar soluciones sucesivamente mejores para un problema. Estos métodos a su vez se dividen en algoritmos evolutivos (ej. algoritmos genéticos) e inteligencia colectiva (ej. algoritmos hormiga)
La Inteligencia Computacional combina elementos de aprendizaje, adaptación, evolución y Lógica difusa para crear programas que son, en cierta manera, inteligentes. La investigación en Inteligencia Computacional no rechaza los métodos estadísticos, pero muy a menudo aporta una vista complementaria. Las Redes Neuronales son una rama de la inteligencia computacional muy relacionada con el aprendizaje automático.
No hay comentarios:
Publicar un comentario